Constraining fault constitutive behavior with slip and stress heterogeneity

نویسندگان

  • B. T. Aagaard
  • T. H. Heaton
چکیده

[1] We study how enforcing self-consistency in the statistical properties of the preshear and postshear stress on a fault can be used to constrain fault constitutive behavior beyond that required to produce a desired spatial and temporal evolution of slip in a single event. We explore features of rupture dynamics that (1) lead to slip heterogeneity in earthquake ruptures and (2) maintain these conditions following rupture, so that the stress field is compatible with the generation of aftershocks and facilitates heterogeneous slip in subsequent events. Our three-dimensional finite element simulations of magnitude 7 events on a vertical, planar strike-slip fault show that the conditions that lead to slip heterogeneity remain in place after large events when the dynamic stress drop (initial shear stress) and breakdown work (fracture energy) are spatially heterogeneous. In these models the breakdown work is on the order of MJ/m, which is comparable to the radiated energy. These conditions producing slip heterogeneity also tend to produce narrower slip pulses independent of a slip rate dependence in the fault constitutive model. An alternative mechanism for generating these confined slip pulses appears to be fault constitutive models that have a stronger rate dependence, which also makes them difficult to implement in numerical models. We hypothesize that self-consistent ruptures could also be produced by very narrow slip pulses propagating in a self-sustaining heterogeneous stress field with breakdown work comparable to fracture energy estimates of kJ/M.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constraining fault constitutive behavior with slip heterogeneity

We explore features of rupture dynamics that (1) lead to slip heterogeneity in earthquake ruptures and (2) maintain conditions that permit slip heterogeneity in subsequent events. Our 3-D finite-element simulations of magnitude 7 events on a vertical, planar strike-slip fault show that the conditions that lead to slip heterogeneity remain in place after large events when the initial shear stres...

متن کامل

Experimental and Numerical Model Studies of Frictional Instability Seismic Sources

Stick-slip frictional instability is widely regarded as a viable mechanism for crustal earthquakes, particularly because of the way that it can be incorporated into the notion of earthquakes as episodic unstable slip events along preexisting zones or planes of weakness represented by faults in the Earth. In this thesis, detailed laboratory observations of stick-slip events generated on a simula...

متن کامل

Dynamic Earthquake Ruptures in the Presence of Lithostatic Normal Stresses: Implications for Friction Models and Heat Production

We simulate dynamic ruptures on a strike-slip fault in homogeneous and layered half-spaces and on a thrust fault in a layered half-space. With traditional friction models, sliding friction exceeds 50% of the fault normal compressive stress, and unless the pore pressures approach the lithostatic stress, the rupture characteristics depend strongly on the depth, and sliding generates large amounts...

متن کامل

Dynamic Stress Changes during Earthquake Rupture

We assess two competing dynamic interpretations that have been proposed for the short slip durations characteristic of kinematic earthquake models derived by inversion of earthquake waveform and geodetic data. The first interpretation would require a fault constitutive relationship in which rapid dynamic restrengthening of the fault surface occurs after passage of the rupture front, a hypothesi...

متن کامل

Estimating stress heterogeneity from aftershock rate

We estimate the rate of aftershocks triggered by a heterogeneous stress change, using the rate-and-state model of Dieterich [1994]. We show than an exponential stress distribution P (τ) ∼ exp(−τ/τ0) gives an Omori law decay of aftershocks with time ∼ 1/t, with an exponent p = 1−Aσn/τ0, where A is a parameter of the rate-and-state friction law, and σn the normal stress. Omori exponent p thus dec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008